LEARNING FOR LIFE

Get Yourself a Better Life! Free eLearning Download

  • Technical
    • Internet & Networking
    • Security & Hacking
    • AI | Artificial intelligence
    • OS & Server
    • WEB/HTML/CSS/AJAX
    • Database & SQL
    • Programming
    • Perl & PHP
    • .Net & Java
    • Mobile Development
    • C/C++/C#
    • Game Development
    • Unix & Linux
    • MAC OS X
    • Windows
    • OFFICE
    • Operation Systems
    • Hardware
  • Graphic & Media
    • Photography
    • 3D
    • Adobe Product Training
    • Art & Drawing & Painting
    • Film & Film Making
    • Game Designing
    • Music Training
    • Tutorials for designer
  • Business
    • Business & Investing
    • Writing & Affiliate
    • Marketing
    • Sales
    • Economics & Finances
    • Seo & Site Traffic
    • Stock & ForEX
  • Life Stype
    • Self Improvement | MP
    • Mindset | NLP
    • Fashion / Clothing / Grooming
    • Seduction
    • Fighting / Martial Arts
    • Food / Drink / Cooking
    • Health / Fitness / Massage
    • Languages / Accents
    • Magic / Illusions / Tricks
    • Psychology / Body Language
  • Engineering & Science
    • Cultures & History
    • Electrical & Architecture
    • Mathematics & Physics
    • Medical
  • Entertainment
    • Comic
    • Manga
    • Novel
    • Magazine
  • PC Game
    • Mac Game
    • Xbox Game
    • Play Station Game
Home » Ebooks & Tutorials » Technical » Development Training » Generative AI Architectures with LLM, Prompt, RAG, Vector DB | Udemy

Generative AI Architectures with LLM, Prompt, RAG, Vector DB | Udemy

02/05/2025 Tut4DL Leave a Comment


Generative AI Architectures with LLM, Prompt, RAG, Vector DB | Udemy [Update 11/2024]
English | Size: 2 GB
Genre: eLearning

Design and Integrate AI-Powered S/LLMs into Enterprise Apps using Prompt Engineering, RAG, Fine-Tuning and Vector DBs

What you’ll learn
Generative AI Model Architectures (Types of Generative AI Models)
Transformer Architecture: Attention is All you Need
Large Language Models (LLMs) Architectures
Text Generation, Summarization, Q&A, Classification, Sentiment Analysis, Embedding Semantic Search
Generate Text with ChatGPT: Understand Capabilities and Limitations of LLMs (Hands-on)
Function Calling and Structured Outputs in Large Language Models (LLMs)
LLM Providers: OpenAI, Meta AI, Anthropic, Hugging Face, Microsoft, Google and Mistral AI
LLM Models: OpenAI ChatGPT, Meta Llama, Anthropic Claude, Google Gemini, Mistral Mixral, xAI Grok
SLM Models: OpenAI ChatGPT 4o mini, Meta Llama 3.2 mini, Google Gemma, Microsoft Phi 3.5
How to Choose LLM Models: Quality, Speed, Price, Latency and Context Window
Interacting Different LLMs with Chat UI: ChatGPT, LLama, Mixtral, Phi3
Installing and Running Llama and Gemma Models Using Ollama
Modernizing Enterprise Apps with AI-Powered LLM Capabilities
Designing the ‘EShop Support App’ with AI-Powered LLM Capabilities
Advanced Prompting Techniques: Zero-shot, One-shot, Few-shot, COT
Design Advanced Prompts for Ticket Detail Page in EShop Support App w/ Q&A Chat and RAG
The RAG Architecture: Ingestion with Embeddings and Vector Search
E2E Workflow of a Retrieval-Augmented Generation (RAG) – The RAG Workflow
End-to-End RAG Example for EShop Customer Support using OpenAI Playground
Fine-Tuning Methods: Full, Parameter-Efficient Fine-Tuning (PEFT), LoRA, Transfer
End-to-End Fine-Tuning a LLM for EShop Customer Support using OpenAI Playground
Choosing the Right Optimization – Prompt Engineering, RAG, and Fine-Tuning
Vector Database and Semantic Search with RAG
Explore Vector Embedding Models: OpenAI – text-embedding-3-small, Ollama – all-minilm
Explore Vector Databases: Pinecone, Chroma, Weaviate, Qdrant, Milvus, PgVector, Redis
Using LLMs and VectorDBs as Cloud-Native Backing Services in Microservices Architecture
Design EShop Support with LLMs, Vector Databases and Semantic Search
Design EShop Support with Azure Cloud AI Services: Azure OpenAI, Azure AI Search

In this course, you’ll learn how to Design Generative AI Architectures with integrating AI-Powered S/LLMs into EShop Support Enterprise Applications using Prompt Engineering, RAG, Fine-tuning and Vector DBs.

We will design Generative AI Architectures with below components;

  1. Small and Large Language Models (S/LLMs)
  2. Prompt Engineering
  3. Retrieval Augmented Generation (RAG)
  4. Fine-Tuning
  5. Vector Databases

We start with the basics and progressively dive deeper into each topic. We’ll also follow LLM Augmentation Flow is a powerful framework that augments LLM results following the Prompt Engineering, RAG and Fine-Tuning.

Large Language Models (LLMs) module;

  • How Large Language Models (LLMs) works?
  • Capabilities of LLMs: Text Generation, Summarization, Q&A, Classification, Sentiment Analysis, Embedding Semantic Search, Code Generation
  • Generate Text with ChatGPT: Understand Capabilities and Limitations of LLMs (Hands-on)
  • Function Calling and Structured Output in Large Language Models (LLMs)
  • LLM Models: OpenAI ChatGPT, Meta Llama, Anthropic Claude, Google Gemini, Mistral Mixral, xAI Grok
  • SLM Models: OpenAI ChatGPT 4o mini, Meta Llama 3.2 mini, Google Gemma, Microsoft Phi 3.5
  • Interacting Different LLMs with Chat UI: ChatGPT, LLama, Mixtral, Phi3
  • Interacting OpenAI Chat Completions Endpoint with Coding
  • Installing and Running Llama and Gemma Models Using Ollama to run LLMs locally
  • Modernizing and Design EShop Support Enterprise Apps with AI-Powered LLM Capabilities

Prompt Engineering module;

  • Steps of Designing Effective Prompts: Iterate, Evaluate and Templatize
  • Advanced Prompting Techniques: Zero-shot, One-shot, Few-shot, Chain-of-Thought, Instruction and Role-based
  • Design Advanced Prompts for EShop Support – Classification, Sentiment Analysis, Summarization, Q&A Chat, and Response Text Generation
  • Design Advanced Prompts for Ticket Detail Page in EShop Support App w/ Q&A Chat and RAG

Retrieval-Augmented Generation (RAG) module;

  • The RAG Architecture Part 1: Ingestion with Embeddings and Vector Search
  • The RAG Architecture Part 2: Retrieval with Reranking and Context Query Prompts
  • The RAG Architecture Part 3: Generation with Generator and Output
  • E2E Workflow of a Retrieval-Augmented Generation (RAG) – The RAG Workflow
  • Design EShop Customer Support using RAG
  • End-to-End RAG Example for EShop Customer Support using OpenAI Playground

Fine-Tuning module;

  • Fine-Tuning Workflow
  • Fine-Tuning Methods: Full, Parameter-Efficient Fine-Tuning (PEFT), LoRA, Transfer
  • Design EShop Customer Support Using Fine-Tuning
  • End-to-End Fine-Tuning a LLM for EShop Customer Support using OpenAI Playground

Also, we will discuss

  • Choosing the Right Optimization – Prompt Engineering, RAG, and Fine-Tuning

Vector Database and Semantic Search with RAG module

  • What are Vectors, Vector Embeddings and Vector Database?
  • Explore Vector Embedding Models: OpenAI – text-embedding-3-small, Ollama – all-minilm
  • Semantic Meaning and Similarity Search: Cosine Similarity, Euclidean Distance
  • How Vector Databases Work: Vector Creation, Indexing, Search
  • Vector Search Algorithms: kNN, ANN, and Disk-ANN
  • Explore Vector Databases: Pinecone, Chroma, Weaviate, Qdrant, Milvus, PgVector, Redis

Lastly, we will Design EShopSupport Architecture with LLMs and Vector Databases

  • Using LLMs and VectorDBs as Cloud-Native Backing Services in Microservices Architecture
  • Design EShop Support with LLMs, Vector Databases and Semantic Search
  • Azure Cloud AI Services: Azure OpenAI, Azure AI Search
  • Design EShop Support with Azure Cloud AI Services: Azure OpenAI, Azure AI Search

This course is more than just learning Generative AI, it’s a deep dive into the world of how to design Advanced AI solutions by integrating LLM architectures into Enterprise applications.

You’ll get hands-on experience designing a complete EShop Customer Support application, including LLM capabilities like Summarization, Q&A, Classification, Sentiment Analysis, Embedding Semantic Search, Code Generation.

Who this course is for:

  • Beginner to integrate AI-Powered LLMs into Enterprise Apps
DOWNLOAD FROM RAPIDGATOR

https://rapidgator.net/file/20f6116ff1f454715b00f3f726045e69/UD-GenerativeAIArchitectureswithLLMPromptRAGVectorDB2024-11.part1.rar.html
https://rapidgator.net/file/8954934268826f08b4788c997b3782f1/UD-GenerativeAIArchitectureswithLLMPromptRAGVectorDB2024-11.part2.rar.html
https://rapidgator.net/file/c442cbdac59caf6983976a54cd1b3adc/UD-GenerativeAIArchitectureswithLLMPromptRAGVectorDB2024-11.part3.rar.html
https://rapidgator.net/file/a738c248e45cad3250ccb165e301707f/UD-GenerativeAIArchitectureswithLLMPromptRAGVectorDB2024-11.part4.rar.html
https://rapidgator.net/file/973dcb808ba617feb2c7c8c554527217/UD-GenerativeAIArchitectureswithLLMPromptRAGVectorDB2024-11.part5.rar.html
https://rapidgator.net/file/7a571bea254517b739923480ac103bf9/UD-GenerativeAIArchitectureswithLLMPromptRAGVectorDB2024-11.part6.rar.html

DOWNLOAD FROM TURBOBIT

https://trbt.cc/lgrzkyhxvsny/UD-GenerativeAIArchitectureswithLLMPromptRAGVectorDB2024-11.part1.rar.html
https://trbt.cc/m5nwhblmxdr1/UD-GenerativeAIArchitectureswithLLMPromptRAGVectorDB2024-11.part2.rar.html
https://trbt.cc/l1exxkbk6xzn/UD-GenerativeAIArchitectureswithLLMPromptRAGVectorDB2024-11.part3.rar.html
https://trbt.cc/w3wriikh66z2/UD-GenerativeAIArchitectureswithLLMPromptRAGVectorDB2024-11.part4.rar.html
https://trbt.cc/8n5vack6ebt3/UD-GenerativeAIArchitectureswithLLMPromptRAGVectorDB2024-11.part5.rar.html
https://trbt.cc/0lzmmn3o6wpp/UD-GenerativeAIArchitectureswithLLMPromptRAGVectorDB2024-11.part6.rar.html

DOWNLOAD FROM NITROFLARE

https://nitroflare.com/view/80F1F84BE75270D/UD-GenerativeAIArchitectureswithLLMPromptRAGVectorDB2024-11.part1.rar
https://nitroflare.com/view/4C0937390A7763F/UD-GenerativeAIArchitectureswithLLMPromptRAGVectorDB2024-11.part2.rar
https://nitroflare.com/view/B93491F4B597060/UD-GenerativeAIArchitectureswithLLMPromptRAGVectorDB2024-11.part3.rar
https://nitroflare.com/view/5AB8BB3264C959D/UD-GenerativeAIArchitectureswithLLMPromptRAGVectorDB2024-11.part4.rar
https://nitroflare.com/view/7FE58E4B6944CC5/UD-GenerativeAIArchitectureswithLLMPromptRAGVectorDB2024-11.part5.rar
https://nitroflare.com/view/EE5912AB117BEBC/UD-GenerativeAIArchitectureswithLLMPromptRAGVectorDB2024-11.part6.rar

If any links die or problem unrar, send request to
https://forms.gle/e557HbjJ5vatekDV9

Development Training Generative AI, LLM, Prompt, RAG, Vector DB

← How to Build the Right Software (and Choose the Right Stack) | Udemy Adobe Substance 3D Painter 11.0.1 [Win] →

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.

  • Catia V5 Beginner to Advanced – Automotive and Industrial | Udemy
  • Complete C++ Programming Course with OOP’s Concept | Udemy
  • Generative AI 2025 Executive Briefing: LLMs for Leaders | Udemy
  • VoIP PBX & Call Center on Asterisk 18 Issabel [Master Class] | Udemy
  • Mastering Juniper Enterprise Routing and Switching – JNCIS-ENT

Meta

  • Log in
  • Entries feed
  • Comments feed
  • WordPress.org

2019 2020 2021 2022 2023 2024 Advanced AWS Azure BBC Beginners BitBook BOOKWARE Certified Cisco Cloud Comic Complete Course Data Design eBook Fundamentals Guide Hybrid iLEARN Introduction JavaScript Learn Learning LinkedIn Linux Lynda Masterclass Microsoft Packt Pluralsight Programming Python Security Skillshare Training Udemy Using XQZT

Copyright © 2025 · Equilibre on Genesis Framework · WordPress · Log in