
English | Size: 303.18 MB
Genre: eLearning
Perhaps the most ground-breaking advances in machine learning have come from applying machine learning to classification problems. In this course, Building Classification Models with scikit-learn you will gain the ability to enumerate the different types of classification algorithms and correctly implement them in scikit-learn. First, you will learn what classification seeks to achieve, and how to evaluate classifiers using accuracy, precision, recall, and ROC curves. Next, you will discover how to implement various classification techniques such as logistic regression, and Naive Bayes classification. You will then understand other more advanced forms of classification, including those using Support Vector Machines, Decision Trees and Stochastic Gradient Descent. Finally, you will round out the course by understanding the hyperparameters that these various classification models possess, and how these can be optimized. When you’re finished with this course, you will have the skills and knowledge to select the correct classification algorithm based on the problem you are trying to solve, and also implement it correctly using scikit-learn.


http://nitroflare.com/view/3367D918FACEA35/PL.Building.Classification.Models.with.scikit-learn.part1.rar
http://nitroflare.com/view/62160D50EBA73A8/PL.Building.Classification.Models.with.scikit-learn.part2.rar

https://rapidgator.net/file/b3bb2a133d40491375d4439426b2904e/PL.Building.Classification.Models.with.scikit-learn.part1.rar.html
https://rapidgator.net/file/9c287df39103f903edf758c74f45de39/PL.Building.Classification.Models.with.scikit-learn.part2.rar.html
If any links die or problem unrar, send request to
https://forms.gle/e557HbjJ5vatekDV9
Leave a Reply