
English | Size: 2 GB
Genre: eLearning
Design and Integrate AI-Powered S/LLMs into Enterprise Apps using Prompt Engineering, RAG, Fine-Tuning and Vector DBs
What you’ll learn
Generative AI Model Architectures (Types of Generative AI Models)
Transformer Architecture: Attention is All you Need
Large Language Models (LLMs) Architectures
Text Generation, Summarization, Q&A, Classification, Sentiment Analysis, Embedding Semantic Search
Generate Text with ChatGPT: Understand Capabilities and Limitations of LLMs (Hands-on)
Function Calling and Structured Outputs in Large Language Models (LLMs)
LLM Providers: OpenAI, Meta AI, Anthropic, Hugging Face, Microsoft, Google and Mistral AI
LLM Models: OpenAI ChatGPT, Meta Llama, Anthropic Claude, Google Gemini, Mistral Mixral, xAI Grok
SLM Models: OpenAI ChatGPT 4o mini, Meta Llama 3.2 mini, Google Gemma, Microsoft Phi 3.5
How to Choose LLM Models: Quality, Speed, Price, Latency and Context Window
Interacting Different LLMs with Chat UI: ChatGPT, LLama, Mixtral, Phi3
Installing and Running Llama and Gemma Models Using Ollama
Modernizing Enterprise Apps with AI-Powered LLM Capabilities
Designing the ‘EShop Support App’ with AI-Powered LLM Capabilities
Advanced Prompting Techniques: Zero-shot, One-shot, Few-shot, COT
Design Advanced Prompts for Ticket Detail Page in EShop Support App w/ Q&A Chat and RAG
The RAG Architecture: Ingestion with Embeddings and Vector Search
E2E Workflow of a Retrieval-Augmented Generation (RAG) – The RAG Workflow
End-to-End RAG Example for EShop Customer Support using OpenAI Playground
Fine-Tuning Methods: Full, Parameter-Efficient Fine-Tuning (PEFT), LoRA, Transfer
End-to-End Fine-Tuning a LLM for EShop Customer Support using OpenAI Playground
Choosing the Right Optimization – Prompt Engineering, RAG, and Fine-Tuning
Vector Database and Semantic Search with RAG
Explore Vector Embedding Models: OpenAI – text-embedding-3-small, Ollama – all-minilm
Explore Vector Databases: Pinecone, Chroma, Weaviate, Qdrant, Milvus, PgVector, Redis
Using LLMs and VectorDBs as Cloud-Native Backing Services in Microservices Architecture
Design EShop Support with LLMs, Vector Databases and Semantic Search
Design EShop Support with Azure Cloud AI Services: Azure OpenAI, Azure AI Search
In this course, you’ll learn how to Design Generative AI Architectures with integrating AI-Powered S/LLMs into EShop Support Enterprise Applications using Prompt Engineering, RAG, Fine-tuning and Vector DBs.
We will design Generative AI Architectures with below components;
- Small and Large Language Models (S/LLMs)
- Prompt Engineering
- Retrieval Augmented Generation (RAG)
- Fine-Tuning
- Vector Databases
We start with the basics and progressively dive deeper into each topic. We’ll also follow LLM Augmentation Flow is a powerful framework that augments LLM results following the Prompt Engineering, RAG and Fine-Tuning.
Large Language Models (LLMs) module;
- How Large Language Models (LLMs) works?
- Capabilities of LLMs: Text Generation, Summarization, Q&A, Classification, Sentiment Analysis, Embedding Semantic Search, Code Generation
- Generate Text with ChatGPT: Understand Capabilities and Limitations of LLMs (Hands-on)
- Function Calling and Structured Output in Large Language Models (LLMs)
- LLM Models: OpenAI ChatGPT, Meta Llama, Anthropic Claude, Google Gemini, Mistral Mixral, xAI Grok
- SLM Models: OpenAI ChatGPT 4o mini, Meta Llama 3.2 mini, Google Gemma, Microsoft Phi 3.5
- Interacting Different LLMs with Chat UI: ChatGPT, LLama, Mixtral, Phi3
- Interacting OpenAI Chat Completions Endpoint with Coding
- Installing and Running Llama and Gemma Models Using Ollama to run LLMs locally
- Modernizing and Design EShop Support Enterprise Apps with AI-Powered LLM Capabilities
Prompt Engineering module;
- Steps of Designing Effective Prompts: Iterate, Evaluate and Templatize
- Advanced Prompting Techniques: Zero-shot, One-shot, Few-shot, Chain-of-Thought, Instruction and Role-based
- Design Advanced Prompts for EShop Support – Classification, Sentiment Analysis, Summarization, Q&A Chat, and Response Text Generation
- Design Advanced Prompts for Ticket Detail Page in EShop Support App w/ Q&A Chat and RAG
Retrieval-Augmented Generation (RAG) module;
- The RAG Architecture Part 1: Ingestion with Embeddings and Vector Search
- The RAG Architecture Part 2: Retrieval with Reranking and Context Query Prompts
- The RAG Architecture Part 3: Generation with Generator and Output
- E2E Workflow of a Retrieval-Augmented Generation (RAG) – The RAG Workflow
- Design EShop Customer Support using RAG
- End-to-End RAG Example for EShop Customer Support using OpenAI Playground
Fine-Tuning module;
- Fine-Tuning Workflow
- Fine-Tuning Methods: Full, Parameter-Efficient Fine-Tuning (PEFT), LoRA, Transfer
- Design EShop Customer Support Using Fine-Tuning
- End-to-End Fine-Tuning a LLM for EShop Customer Support using OpenAI Playground
Also, we will discuss
- Choosing the Right Optimization – Prompt Engineering, RAG, and Fine-Tuning
Vector Database and Semantic Search with RAG module
- What are Vectors, Vector Embeddings and Vector Database?
- Explore Vector Embedding Models: OpenAI – text-embedding-3-small, Ollama – all-minilm
- Semantic Meaning and Similarity Search: Cosine Similarity, Euclidean Distance
- How Vector Databases Work: Vector Creation, Indexing, Search
- Vector Search Algorithms: kNN, ANN, and Disk-ANN
- Explore Vector Databases: Pinecone, Chroma, Weaviate, Qdrant, Milvus, PgVector, Redis
Lastly, we will Design EShopSupport Architecture with LLMs and Vector Databases
- Using LLMs and VectorDBs as Cloud-Native Backing Services in Microservices Architecture
- Design EShop Support with LLMs, Vector Databases and Semantic Search
- Azure Cloud AI Services: Azure OpenAI, Azure AI Search
- Design EShop Support with Azure Cloud AI Services: Azure OpenAI, Azure AI Search
This course is more than just learning Generative AI, it’s a deep dive into the world of how to design Advanced AI solutions by integrating LLM architectures into Enterprise applications.
You’ll get hands-on experience designing a complete EShop Customer Support application, including LLM capabilities like Summarization, Q&A, Classification, Sentiment Analysis, Embedding Semantic Search, Code Generation.
Who this course is for:
- Beginner to integrate AI-Powered LLMs into Enterprise Apps

https://rapidgator.net/file/20f6116ff1f454715b00f3f726045e69/UD-GenerativeAIArchitectureswithLLMPromptRAGVectorDB2024-11.part1.rar.html
https://rapidgator.net/file/8954934268826f08b4788c997b3782f1/UD-GenerativeAIArchitectureswithLLMPromptRAGVectorDB2024-11.part2.rar.html
https://rapidgator.net/file/c442cbdac59caf6983976a54cd1b3adc/UD-GenerativeAIArchitectureswithLLMPromptRAGVectorDB2024-11.part3.rar.html
https://rapidgator.net/file/a738c248e45cad3250ccb165e301707f/UD-GenerativeAIArchitectureswithLLMPromptRAGVectorDB2024-11.part4.rar.html
https://rapidgator.net/file/973dcb808ba617feb2c7c8c554527217/UD-GenerativeAIArchitectureswithLLMPromptRAGVectorDB2024-11.part5.rar.html
https://rapidgator.net/file/7a571bea254517b739923480ac103bf9/UD-GenerativeAIArchitectureswithLLMPromptRAGVectorDB2024-11.part6.rar.html
https://trbt.cc/lgrzkyhxvsny/UD-GenerativeAIArchitectureswithLLMPromptRAGVectorDB2024-11.part1.rar.html
https://trbt.cc/m5nwhblmxdr1/UD-GenerativeAIArchitectureswithLLMPromptRAGVectorDB2024-11.part2.rar.html
https://trbt.cc/l1exxkbk6xzn/UD-GenerativeAIArchitectureswithLLMPromptRAGVectorDB2024-11.part3.rar.html
https://trbt.cc/w3wriikh66z2/UD-GenerativeAIArchitectureswithLLMPromptRAGVectorDB2024-11.part4.rar.html
https://trbt.cc/8n5vack6ebt3/UD-GenerativeAIArchitectureswithLLMPromptRAGVectorDB2024-11.part5.rar.html
https://trbt.cc/0lzmmn3o6wpp/UD-GenerativeAIArchitectureswithLLMPromptRAGVectorDB2024-11.part6.rar.html
https://nitroflare.com/view/80F1F84BE75270D/UD-GenerativeAIArchitectureswithLLMPromptRAGVectorDB2024-11.part1.rar
https://nitroflare.com/view/4C0937390A7763F/UD-GenerativeAIArchitectureswithLLMPromptRAGVectorDB2024-11.part2.rar
https://nitroflare.com/view/B93491F4B597060/UD-GenerativeAIArchitectureswithLLMPromptRAGVectorDB2024-11.part3.rar
https://nitroflare.com/view/5AB8BB3264C959D/UD-GenerativeAIArchitectureswithLLMPromptRAGVectorDB2024-11.part4.rar
https://nitroflare.com/view/7FE58E4B6944CC5/UD-GenerativeAIArchitectureswithLLMPromptRAGVectorDB2024-11.part5.rar
https://nitroflare.com/view/EE5912AB117BEBC/UD-GenerativeAIArchitectureswithLLMPromptRAGVectorDB2024-11.part6.rar
If any links die or problem unrar, send request to
https://forms.gle/e557HbjJ5vatekDV9
Leave a Reply